direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C22.7C42, (C2×C24)⋊7C4, (C2×C8)⋊3C12, (C2×C4)⋊2C24, (C2×C12)⋊4C8, C2.2(C4×C24), C6.11(C4×C8), C6.13(C4⋊C8), (C22×C8).3C6, C12.66(C4⋊C4), (C2×C42).4C6, (C2×C12).81Q8, C6.8(C8⋊C4), (C2×C12).532D4, (C2×C6).29C42, C22.7(C2×C24), C22.7(C4×C12), (C22×C24).4C2, C6.24(C22⋊C8), C23.40(C2×C12), (C22×C4).10C12, (C22×C12).14C4, (C2×C6).28M4(2), C12.109(C22⋊C4), C22.7(C3×M4(2)), C6.20(C2.C42), (C22×C12).606C22, C2.1(C3×C4⋊C8), (C2×C4×C12).1C2, C4.17(C3×C4⋊C4), C2.2(C3×C8⋊C4), (C2×C6).38(C2×C8), C2.1(C3×C22⋊C8), (C2×C4).23(C3×Q8), (C2×C6).58(C4⋊C4), (C2×C4).81(C2×C12), (C2×C4).141(C3×D4), C22.15(C3×C4⋊C4), C4.24(C3×C22⋊C4), (C2×C12).343(C2×C4), (C22×C4).140(C2×C6), (C22×C6).144(C2×C4), C22.27(C3×C22⋊C4), C2.1(C3×C2.C42), (C2×C6).129(C22⋊C4), SmallGroup(192,142)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C22.7C42
G = < a,b,c,d,e | a3=b2=c2=e4=1, d4=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, ede-1=bd=db, be=eb, cd=dc, ce=ec >
Subgroups: 154 in 118 conjugacy classes, 82 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C42, C2×C8, C2×C8, C22×C4, C22×C4, C24, C2×C12, C2×C12, C2×C12, C22×C6, C2×C42, C22×C8, C4×C12, C2×C24, C2×C24, C22×C12, C22×C12, C22.7C42, C2×C4×C12, C22×C24, C3×C22.7C42
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, D4, Q8, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C24, C2×C12, C3×D4, C3×Q8, C2.C42, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×M4(2), C22.7C42, C3×C2.C42, C4×C24, C3×C8⋊C4, C3×C22⋊C8, C3×C4⋊C8, C3×C22.7C42
(1 39 31)(2 40 32)(3 33 25)(4 34 26)(5 35 27)(6 36 28)(7 37 29)(8 38 30)(9 53 45)(10 54 46)(11 55 47)(12 56 48)(13 49 41)(14 50 42)(15 51 43)(16 52 44)(17 137 112)(18 138 105)(19 139 106)(20 140 107)(21 141 108)(22 142 109)(23 143 110)(24 144 111)(57 73 65)(58 74 66)(59 75 67)(60 76 68)(61 77 69)(62 78 70)(63 79 71)(64 80 72)(81 103 89)(82 104 90)(83 97 91)(84 98 92)(85 99 93)(86 100 94)(87 101 95)(88 102 96)(113 129 121)(114 130 122)(115 131 123)(116 132 124)(117 133 125)(118 134 126)(119 135 127)(120 136 128)(145 161 153)(146 162 154)(147 163 155)(148 164 156)(149 165 157)(150 166 158)(151 167 159)(152 168 160)(169 185 177)(170 186 178)(171 187 179)(172 188 180)(173 189 181)(174 190 182)(175 191 183)(176 192 184)
(1 119)(2 120)(3 113)(4 114)(5 115)(6 116)(7 117)(8 118)(9 108)(10 109)(11 110)(12 111)(13 112)(14 105)(15 106)(16 107)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(25 121)(26 122)(27 123)(28 124)(29 125)(30 126)(31 127)(32 128)(33 129)(34 130)(35 131)(36 132)(37 133)(38 134)(39 135)(40 136)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(57 145)(58 146)(59 147)(60 148)(61 149)(62 150)(63 151)(64 152)(65 153)(66 154)(67 155)(68 156)(69 157)(70 158)(71 159)(72 160)(73 161)(74 162)(75 163)(76 164)(77 165)(78 166)(79 167)(80 168)(81 169)(82 170)(83 171)(84 172)(85 173)(86 174)(87 175)(88 176)(89 177)(90 178)(91 179)(92 180)(93 181)(94 182)(95 183)(96 184)(97 187)(98 188)(99 189)(100 190)(101 191)(102 192)(103 185)(104 186)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)(161 165)(162 166)(163 167)(164 168)(169 173)(170 174)(171 175)(172 176)(177 181)(178 182)(179 183)(180 184)(185 189)(186 190)(187 191)(188 192)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)
(1 175 151 47)(2 88 152 144)(3 169 145 41)(4 82 146 138)(5 171 147 43)(6 84 148 140)(7 173 149 45)(8 86 150 142)(9 37 189 165)(10 134 190 78)(11 39 191 167)(12 136 192 80)(13 33 185 161)(14 130 186 74)(15 35 187 163)(16 132 188 76)(17 121 89 65)(18 26 90 154)(19 123 91 67)(20 28 92 156)(21 125 93 69)(22 30 94 158)(23 127 95 71)(24 32 96 160)(25 177 153 49)(27 179 155 51)(29 181 157 53)(31 183 159 55)(34 104 162 105)(36 98 164 107)(38 100 166 109)(40 102 168 111)(42 114 170 58)(44 116 172 60)(46 118 174 62)(48 120 176 64)(50 122 178 66)(52 124 180 68)(54 126 182 70)(56 128 184 72)(57 137 113 81)(59 139 115 83)(61 141 117 85)(63 143 119 87)(73 112 129 103)(75 106 131 97)(77 108 133 99)(79 110 135 101)
G:=sub<Sym(192)| (1,39,31)(2,40,32)(3,33,25)(4,34,26)(5,35,27)(6,36,28)(7,37,29)(8,38,30)(9,53,45)(10,54,46)(11,55,47)(12,56,48)(13,49,41)(14,50,42)(15,51,43)(16,52,44)(17,137,112)(18,138,105)(19,139,106)(20,140,107)(21,141,108)(22,142,109)(23,143,110)(24,144,111)(57,73,65)(58,74,66)(59,75,67)(60,76,68)(61,77,69)(62,78,70)(63,79,71)(64,80,72)(81,103,89)(82,104,90)(83,97,91)(84,98,92)(85,99,93)(86,100,94)(87,101,95)(88,102,96)(113,129,121)(114,130,122)(115,131,123)(116,132,124)(117,133,125)(118,134,126)(119,135,127)(120,136,128)(145,161,153)(146,162,154)(147,163,155)(148,164,156)(149,165,157)(150,166,158)(151,167,159)(152,168,160)(169,185,177)(170,186,178)(171,187,179)(172,188,180)(173,189,181)(174,190,182)(175,191,183)(176,192,184), (1,119)(2,120)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,108)(10,109)(11,110)(12,111)(13,112)(14,105)(15,106)(16,107)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,161)(74,162)(75,163)(76,164)(77,165)(78,166)(79,167)(80,168)(81,169)(82,170)(83,171)(84,172)(85,173)(86,174)(87,175)(88,176)(89,177)(90,178)(91,179)(92,180)(93,181)(94,182)(95,183)(96,184)(97,187)(98,188)(99,189)(100,190)(101,191)(102,192)(103,185)(104,186), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160)(161,165)(162,166)(163,167)(164,168)(169,173)(170,174)(171,175)(172,176)(177,181)(178,182)(179,183)(180,184)(185,189)(186,190)(187,191)(188,192), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192), (1,175,151,47)(2,88,152,144)(3,169,145,41)(4,82,146,138)(5,171,147,43)(6,84,148,140)(7,173,149,45)(8,86,150,142)(9,37,189,165)(10,134,190,78)(11,39,191,167)(12,136,192,80)(13,33,185,161)(14,130,186,74)(15,35,187,163)(16,132,188,76)(17,121,89,65)(18,26,90,154)(19,123,91,67)(20,28,92,156)(21,125,93,69)(22,30,94,158)(23,127,95,71)(24,32,96,160)(25,177,153,49)(27,179,155,51)(29,181,157,53)(31,183,159,55)(34,104,162,105)(36,98,164,107)(38,100,166,109)(40,102,168,111)(42,114,170,58)(44,116,172,60)(46,118,174,62)(48,120,176,64)(50,122,178,66)(52,124,180,68)(54,126,182,70)(56,128,184,72)(57,137,113,81)(59,139,115,83)(61,141,117,85)(63,143,119,87)(73,112,129,103)(75,106,131,97)(77,108,133,99)(79,110,135,101)>;
G:=Group( (1,39,31)(2,40,32)(3,33,25)(4,34,26)(5,35,27)(6,36,28)(7,37,29)(8,38,30)(9,53,45)(10,54,46)(11,55,47)(12,56,48)(13,49,41)(14,50,42)(15,51,43)(16,52,44)(17,137,112)(18,138,105)(19,139,106)(20,140,107)(21,141,108)(22,142,109)(23,143,110)(24,144,111)(57,73,65)(58,74,66)(59,75,67)(60,76,68)(61,77,69)(62,78,70)(63,79,71)(64,80,72)(81,103,89)(82,104,90)(83,97,91)(84,98,92)(85,99,93)(86,100,94)(87,101,95)(88,102,96)(113,129,121)(114,130,122)(115,131,123)(116,132,124)(117,133,125)(118,134,126)(119,135,127)(120,136,128)(145,161,153)(146,162,154)(147,163,155)(148,164,156)(149,165,157)(150,166,158)(151,167,159)(152,168,160)(169,185,177)(170,186,178)(171,187,179)(172,188,180)(173,189,181)(174,190,182)(175,191,183)(176,192,184), (1,119)(2,120)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,108)(10,109)(11,110)(12,111)(13,112)(14,105)(15,106)(16,107)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,161)(74,162)(75,163)(76,164)(77,165)(78,166)(79,167)(80,168)(81,169)(82,170)(83,171)(84,172)(85,173)(86,174)(87,175)(88,176)(89,177)(90,178)(91,179)(92,180)(93,181)(94,182)(95,183)(96,184)(97,187)(98,188)(99,189)(100,190)(101,191)(102,192)(103,185)(104,186), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160)(161,165)(162,166)(163,167)(164,168)(169,173)(170,174)(171,175)(172,176)(177,181)(178,182)(179,183)(180,184)(185,189)(186,190)(187,191)(188,192), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192), (1,175,151,47)(2,88,152,144)(3,169,145,41)(4,82,146,138)(5,171,147,43)(6,84,148,140)(7,173,149,45)(8,86,150,142)(9,37,189,165)(10,134,190,78)(11,39,191,167)(12,136,192,80)(13,33,185,161)(14,130,186,74)(15,35,187,163)(16,132,188,76)(17,121,89,65)(18,26,90,154)(19,123,91,67)(20,28,92,156)(21,125,93,69)(22,30,94,158)(23,127,95,71)(24,32,96,160)(25,177,153,49)(27,179,155,51)(29,181,157,53)(31,183,159,55)(34,104,162,105)(36,98,164,107)(38,100,166,109)(40,102,168,111)(42,114,170,58)(44,116,172,60)(46,118,174,62)(48,120,176,64)(50,122,178,66)(52,124,180,68)(54,126,182,70)(56,128,184,72)(57,137,113,81)(59,139,115,83)(61,141,117,85)(63,143,119,87)(73,112,129,103)(75,106,131,97)(77,108,133,99)(79,110,135,101) );
G=PermutationGroup([[(1,39,31),(2,40,32),(3,33,25),(4,34,26),(5,35,27),(6,36,28),(7,37,29),(8,38,30),(9,53,45),(10,54,46),(11,55,47),(12,56,48),(13,49,41),(14,50,42),(15,51,43),(16,52,44),(17,137,112),(18,138,105),(19,139,106),(20,140,107),(21,141,108),(22,142,109),(23,143,110),(24,144,111),(57,73,65),(58,74,66),(59,75,67),(60,76,68),(61,77,69),(62,78,70),(63,79,71),(64,80,72),(81,103,89),(82,104,90),(83,97,91),(84,98,92),(85,99,93),(86,100,94),(87,101,95),(88,102,96),(113,129,121),(114,130,122),(115,131,123),(116,132,124),(117,133,125),(118,134,126),(119,135,127),(120,136,128),(145,161,153),(146,162,154),(147,163,155),(148,164,156),(149,165,157),(150,166,158),(151,167,159),(152,168,160),(169,185,177),(170,186,178),(171,187,179),(172,188,180),(173,189,181),(174,190,182),(175,191,183),(176,192,184)], [(1,119),(2,120),(3,113),(4,114),(5,115),(6,116),(7,117),(8,118),(9,108),(10,109),(11,110),(12,111),(13,112),(14,105),(15,106),(16,107),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(25,121),(26,122),(27,123),(28,124),(29,125),(30,126),(31,127),(32,128),(33,129),(34,130),(35,131),(36,132),(37,133),(38,134),(39,135),(40,136),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(57,145),(58,146),(59,147),(60,148),(61,149),(62,150),(63,151),(64,152),(65,153),(66,154),(67,155),(68,156),(69,157),(70,158),(71,159),(72,160),(73,161),(74,162),(75,163),(76,164),(77,165),(78,166),(79,167),(80,168),(81,169),(82,170),(83,171),(84,172),(85,173),(86,174),(87,175),(88,176),(89,177),(90,178),(91,179),(92,180),(93,181),(94,182),(95,183),(96,184),(97,187),(98,188),(99,189),(100,190),(101,191),(102,192),(103,185),(104,186)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160),(161,165),(162,166),(163,167),(164,168),(169,173),(170,174),(171,175),(172,176),(177,181),(178,182),(179,183),(180,184),(185,189),(186,190),(187,191),(188,192)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192)], [(1,175,151,47),(2,88,152,144),(3,169,145,41),(4,82,146,138),(5,171,147,43),(6,84,148,140),(7,173,149,45),(8,86,150,142),(9,37,189,165),(10,134,190,78),(11,39,191,167),(12,136,192,80),(13,33,185,161),(14,130,186,74),(15,35,187,163),(16,132,188,76),(17,121,89,65),(18,26,90,154),(19,123,91,67),(20,28,92,156),(21,125,93,69),(22,30,94,158),(23,127,95,71),(24,32,96,160),(25,177,153,49),(27,179,155,51),(29,181,157,53),(31,183,159,55),(34,104,162,105),(36,98,164,107),(38,100,166,109),(40,102,168,111),(42,114,170,58),(44,116,172,60),(46,118,174,62),(48,120,176,64),(50,122,178,66),(52,124,180,68),(54,126,182,70),(56,128,184,72),(57,137,113,81),(59,139,115,83),(61,141,117,85),(63,143,119,87),(73,112,129,103),(75,106,131,97),(77,108,133,99),(79,110,135,101)]])
120 conjugacy classes
| class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4H | 4I | ··· | 4P | 6A | ··· | 6N | 8A | ··· | 8P | 12A | ··· | 12P | 12Q | ··· | 12AF | 24A | ··· | 24AF |
| order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
| size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
120 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | - | |||||||||||||
| image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C8 | C12 | C12 | C24 | D4 | Q8 | M4(2) | C3×D4 | C3×Q8 | C3×M4(2) |
| kernel | C3×C22.7C42 | C2×C4×C12 | C22×C24 | C22.7C42 | C2×C24 | C22×C12 | C2×C42 | C22×C8 | C2×C12 | C2×C8 | C22×C4 | C2×C4 | C2×C12 | C2×C12 | C2×C6 | C2×C4 | C2×C4 | C22 |
| # reps | 1 | 1 | 2 | 2 | 8 | 4 | 2 | 4 | 16 | 16 | 8 | 32 | 3 | 1 | 4 | 6 | 2 | 8 |
Matrix representation of C3×C22.7C42 ►in GL5(𝔽73)
| 64 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 72 | 0 |
| 0 | 0 | 0 | 0 | 72 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 72 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 46 | 0 | 0 | 0 | 0 |
| 0 | 63 | 0 | 0 | 0 |
| 0 | 0 | 27 | 0 | 0 |
| 0 | 0 | 0 | 47 | 12 |
| 0 | 0 | 0 | 47 | 26 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 72 | 0 | 0 | 0 |
| 0 | 0 | 46 | 0 | 0 |
| 0 | 0 | 0 | 52 | 71 |
| 0 | 0 | 0 | 2 | 21 |
G:=sub<GL(5,GF(73))| [64,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[46,0,0,0,0,0,63,0,0,0,0,0,27,0,0,0,0,0,47,47,0,0,0,12,26],[1,0,0,0,0,0,72,0,0,0,0,0,46,0,0,0,0,0,52,2,0,0,0,71,21] >;
C3×C22.7C42 in GAP, Magma, Sage, TeX
C_3\times C_2^2._7C_4^2
% in TeX
G:=Group("C3xC2^2.7C4^2"); // GroupNames label
G:=SmallGroup(192,142);
// by ID
G=gap.SmallGroup(192,142);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,344,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=e^4=1,d^4=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c>;
// generators/relations